Harmonic Analysis Homework Sheet 6

Exercise 6.1

Show the following Littlewood principle.

Lemma 0.1. Let $1 \leq q, p < \infty$ and T be a non-zero translation invariant operator on \mathbb{R}^d . Then the estimate $||Tf||_{L^q(\mathbb{R}^d)} \lesssim ||f||_{L^p(\mathbb{R}^d)}$ is only possible for $q \geq p$.

Exercise 6.2

Let $a \in \mathbb{R} \setminus \{0\}$ and $0 < \varepsilon < \eta < \infty$. Show that

$$\left|\int_{\varepsilon}^{\eta} \frac{\cos(ar) - \cos r}{r} \, dr\right| \le 2\left|\log\frac{1}{|a|}\right|,$$
$$\lim_{\varepsilon \to 0, \eta \to \infty} \int_{\varepsilon}^{\eta} \frac{\cos(ar) - \cos r}{r} \, dr = \log\frac{1}{|a|}.$$

Exercise 6.3

Let $\xi \in \mathbb{R}^d \setminus \{0\}$. Recalling $|\mathbb{S}^{d-1}| = 2\pi^{d/2}\Gamma(d/2)$, show that

$$\int_{\mathbb{S}^{d-1}} \operatorname{sgn}(\xi \cdot \omega) \omega_j \, d\omega = \frac{2\pi^{\frac{d-1}{2}}}{\Gamma(\frac{d+1}{2})} \, \frac{\xi_j}{|\xi|}$$

For $j \in \{1, ..., d\}$ let

$$(R_j f)(x) := (W_j * f)(x) := \frac{\Gamma(\frac{d+1}{2})}{\pi^{\frac{d+1}{2}}} \text{ p. v. } \int_{\mathbb{R}^d} \frac{x_j - y_j}{|x - y|^{d+1}} f(y) \, dy \, .$$

be the *j*-th Riesz transform of $f \in \mathcal{S}(\mathbb{R}^d)$. Using the above identity, show that R_j is given in Fourier space by multiplication with $-i\xi_j|\xi|^{-1}$, i.e., for $f \in \mathcal{S}(\mathbb{R}^d)$, we have

$$(R_j f)(x) = (-\frac{i\xi_j}{|\xi|}\hat{f}(\xi))^{\vee}(x).$$

Show that the Riesz transforms satisfy

$$-1 = \sum_{j=1}^{d} R_j^2 \quad \text{on } L^2(\mathbb{R}^d)$$

where -1 is understood as the identity operator. For $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and $1 \leq j, k \leq d$ show that

$$\partial_{x_j}\partial_{x_k}\varphi(x) = -R_j R_k \Delta \varphi(x), \quad x \in \mathbb{R}^d.$$

Exercise 6.4

Show that the Dini-type condition on $\Omega(x)$

$$\int_0^1 \frac{\omega(\delta)}{\delta} \, d\delta < \infty \quad \text{with } \omega(\delta) := \sup_{|x-x'| \le \delta, \, |x| = |x'| = 1} |\Omega(x) - \Omega(x')|$$

in Theorem 3.11 implies Hörmander's condition

$$\sup_{y,z \in \mathbb{R}^d} \int_{|x-z| \ge 2|y-z|} |K(x-z) - K(x-y)| \lesssim 1 \quad \text{for } K(x) = \frac{\Omega(x)}{|x|^d}.$$

Moreover, establish c) in Theorem 3.12 in the notes.