Summer term 2020

Harmonic Analysis
Homework Sheet 6

Exercise 6.1
Show the following Littlewood principle.

Lemma 0.1. Let 1 < ¢,p < oo and T be a non-zero translation invariant operator on RZ.
Then the estimate ||T f||paway S || fl|eray s only possible for ¢ > p.

Exercise 6.2
Let a € R\ {0} and 0 < € <7 < oco. Show that
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Exercise 6.3
Let £ € R\ {0}. Recalling [S?!| = 27%2I'(d/2), show that
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be the j-th Riesz transform of f € S(R?). Using the above identity, show that R; is given in
Fourier space by multiplication with —i¢;|¢|7!, i.e., for f € S(R?), we have
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Show that the Riesz transforms satisfy
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where —1 is understood as the identity operator. For ¢ € S(R?) and 1 < j, k < d show that

Ou,0n,p(x) = —RjRyAp(z), z€R?.

Exercise 6.4



Show that the Dini-type condition on €(x)
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in Theorem 3.11 implies Hérmander’s condition
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Moreover, establish ¢) in Theorem 3.12 in the notes.



