Harmonic Analysis Homework Sheet 2

Exercise 2.1

Let $\hat{f}(\xi) := \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} f(x) dx$ denote the Fourier transform which is well-defined on $L^1(\mathbb{R}^d)$ or the Schwartz space $\mathcal{S}(\mathbb{R}^d)$ and then extended to $L^p(\mathbb{R}^d)$ for any $1 \leq p \leq 2$ by Plancherel (initially on $L^1 \cap L^2$ and then extended via density to L^2) and interpolation. Recall that the interpolation lead us to the (non-optimal) Hausdorff–Young inequality

$$\|\hat{f}\|_{L^{p'}(\mathbb{R}^d)} \le \|f\|_{L^p(\mathbb{R}^d)}.$$

Suppose there was an inequality of the form

$$\|\hat{f}\|_{L^{q}(\mathbb{R}^{d})} \leq C_{p,q,d} \|f\|_{L^{p}(\mathbb{R}^{d})}$$

for some $1 \le p, q \le \infty$. Show (by a scaling argument) that necessarily q = p' and, by randomizing a sequence of functions and Khintchine's inequality, that $p \le 2$.

Exercise 2.2

Show the following

Lemma 0.1. Let $(X, \|\cdot\|)$ be a quasi-normed space, i.e., $\|f+g\| \leq c_1(\|f\|+\|g\|)$ for some $c_1 \geq 1$. Assume that a sequence $(f_k)_{k\in\mathbb{N}} \in X$ satisfies $\|f_k\| \leq A \cdot c_2^{-k}$ for some A > 0 and $c_2 > 1$. Then $\|\sum_{k=1}^N f_k\| \leq A \cdot c_3$ where c_3 does not depend on A or N (but possibly on c_1 and c_2).

(Why is this assertion non-trivial?)

Exercise 2.3

Establish the upper bound " $\leq_{p,q}$ " in Proposition 1.2.18 for $q < \infty$. (Instruction/Hints: Make use of (i) \Rightarrow (ii) of Theorem 1.2.14 to decompose $f = \sum_m f_m$ where f_m are quasi-step functions of height 2^m and width W_m so that the sequence $a_m := 2^m W_m^{1/p}$ has ℓ_m^q norm $\sim_{p,q} 1$. Then make an ansatz for g such as $g := \sum_m g_m$ where $g_m := a_m^r |f_m|^{p-2} \overline{f_m}$ with r = q - p (or $r = (q - p)_+$) and show that $|\int_X fg| \sim_{p,q} 1$. Thus, you have reduced the claim to showing $||\sum_m g_m||_{p',q'} \leq_{p,q} 1$ which you may want to show using (iii) \Rightarrow (i) of Theorem 1.2.14. First of all, convince yourself that $g_m \leq_{p,q} a_m^r 2^{m(p-1)} \mathbf{1}_{E_m}$ where $E_m = \text{supp } f_m$ satisfies $\mu(E_m) \leq_{p,q} W_m = 2^{-mp} a_m^p$ with the above a_m . To remedy for the fact that the heights of g_m are not of lower exponential growth (at least a priori), you can introduce modified heights $H_m := \sup_{k\geq 0} a_{m-k}^r 2^{m(p-1)} 2^{-k(p-1)/2}$. (Clearly, the old weights are recovered for k = 0.) Having checked that $H_{m+1} \geq 2^{(p-1)/2} H_m$ (the lower exponential growth condition), we see that it would suffice to check $||\sum_m H_m \mathbf{1}_{E_m}||_{p',q'} \leq_{p,q} 1$. But now, we're in position to apply (iii) \Rightarrow (i), i.e., you are left to check $||H_m\mu(E_m)^{1/p'}||_{\ell_2'} \leq_{p,q} 1$.)

Exercise 2.4

Let $0 , <math>1 < q \leq \infty$ and assume (X, μ) and (Y, ν) are two measure spaces. Let T be a sublinear operator (initially defined on the set of really simple functions $f = \sum_{k=1}^{N} a_k \mathbf{1}_{E_k}$ on X such that Tf is a ν -measurable function on Y), i.e., $|T(f+g)| \leq |Tf| + |Tg|$ and

 $|T(\lambda f)| = |\lambda||Tf|$ for $f, g \in \text{dom}(T)$ and $\lambda \in \mathbb{C}$. We say that T is of restricted weak type (p, q) if

$$\alpha d_{T\mathbf{1}_E}(\alpha)^{1/q} \lesssim |E|^{1/p}$$
 for all $\alpha > 0, E \subseteq X$.

Prove that T is of restricted weak type (p,q) if and only if

$$\left|\int_{F} (T\mathbf{1}_{E})(x) \, d\nu(x)\right| =: \left|\langle \mathbf{1}_{F}, T\mathbf{1}_{E} \rangle\right| \lesssim |E|^{1/p} |F|^{1/q'}$$

for all $E \subseteq X$ and $F \subseteq Y$. (Hint: Use Proposition 1.2.18 for " \Leftarrow " and Hölder's inequality or the layer-cake representation and Fubini to prove " \Rightarrow ".)