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This talk deals with continuum Calogero-Moser (CM) systems, which is a
novel class of completely integrable PDEs that typically exhibit turbulent
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Introduction: Genesis of Calogero-Moser Systems

We begin in 1975 with a seminal work by Jürgen Moser in (Adv. Math. 1975)

ADVANCES IN MATHEMATICS 16, 197-220 (1975) 

Three Integrable Hamiltonian Systems 
Connected with lsospectral Deformations* 

J. MOSER 

Courant Institute of Mathematical Sciences, New York University, 
New York, New York 10012 

DEDICATED TO STAN ULAM 

1. INTRODUCTION 

(a) Background. In the early stages of classical mechanics it was the 
ultimate goal to integrate the differential equations of motions explicitly 
or by quadrature. This led to the discovery of various “integrable” 
systems, such as Euler’s two fixed center problems, Jacobi’s integration 
of the geodesics on a three-axial ellipsoid, S. Kovalevski’s motion of the 
top under gravity for special ratios of the principal moments of inertia, 
to name a few nontrivial examples. These efforts and their climax with 
the work of Jacobi who applied skillfully the method of separation of 
variables to partial differential equations, the Hamilton- Jacobi equations 
associated with the mechanical system, to establish their integrable 
character. 

However, this development took a sharp turn when Poincare showed 
that most Hamiltonian systems are not integrable and gave arguments 
indicating the nonintegrability of the three-body problem. In the same 
negative direction lies Brun’s discovery that the three-body problem has 
no algebraic integral except for the well-known classical ones and 
algebraic functions of these. These results express, in other words, that 
integrability of Hamiltonian systems is not a generic property; it is 
destroyed under small perturbations of the Hamiltonian. 

Therefore it seems an anachronismus to discuss these exceptional 

* This work was partially supported by the National Science Foundation, Grant 
No. NSF-GP-42298X. 

197 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Recent breakthroughs due to Gardner et al. (1967) and P. Lax (1968) on
complete integrabilty of Korteweg-de Vries equation (KdV).

Moser’s idea: Use Lax pairs for Hamiltonian systems with finitely many
degrees of freedom to solve a conjecture by F. Calogero (1971).
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Classical Calogero-Moser Systems

Jürgen Moser (Adv. Math. 1975) proved complete integrability of the classical
N-body system with Hamiltonian

HN =
1

2

N∑
k=1

p2k +
1

2

N∑
k ̸=ℓ

1

(xk − xℓ)2

with positions xk ∈ R and momenta pk ∈ R for 1 ≤ k ≤ N.

Lax–Moser matrix L(t) = L(x⃗(t), p⃗(t)) ∈ CN×N yields set of conserved
quantities

Ik = Tr(Lk(t)) = const. for k = 1, . . . ,N

Involution {Ik , Il} = 0 yields complete integrability (in Poincaré sense)
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Classical Calogero-Moser Systems

The completely integrable Calogero-Moser (CM) Hamiltonian:

HN =
1

2

N∑
k=1

p2k +
1

2

N∑
k ̸=ℓ

1

(xk − xℓ)2

with positions xk ∈ R and momenta pk ∈ R for 1 ≤ k ≤ N.

Olshanetsky-Perelomov (Invent. Math. 1976) found an alternative proof using
free matrix flows, i. e., consider the Hermitian matrix

X(t) = X0 + tL0

where L0 = Moser’s L|t=0 and X0 = diag(x1(0), . . . , xN(0)) (initial positions).

Eigenvalues {xk(t)}Nk=1 of matrix X(t) solve CM-system.

Matrix approach yields a whole zoo of CM-systems with Lie algebras, ℘(x)
instead of 1/x2, etc.
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From discrete to continuum CM-systems

Question: What happens to CM-systems as N → ∞?

Scalar Continuum CM-Systems:

Calogero-Moser Derivative NLS:

i∂tu = −∂xxu + (D + |D|)(|u|2)u

[Abanov-Bettelheim-Wiegmann ’09, L.-Gérard ’22, Killip et al. ’23, Kim et al. ’24,

Kim-Kwon ’24, Badreddine ’23, ...]

Benjamin-Ono Equation:

∂tu = ∂x(|D|u − u2)

[Ingimarson-Pego ’23]...

Spin Continnum CM-Systems:

Half-Wave Maps Equation:

∂tu = u× |D|u (HWM)

[Zhou-Stone ’17, L-Schikorra ’18, L.-Sok ’20, Langmann et al. ’22, Matsuno ’22]...
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Common Features of Continuum CM-Systems

Lax pair structure on L2-based Hardy spaces

L2+ = {f ∈ L2 | supp f̂ ⊂ [0,∞)}

Prototypes are rational functions with poles in C−, e. g., f (x) =
1

x+i ∈ L2+

Infinite hierarchy of conserved quantities

Ik(u(t)) = Ik(u0) for k = 1, 2, 3, . . .

Solitons are always rational functions

Existence of turbulent solutions with growth of Sobolev norms

∥u(t)∥Hs → +∞ as t → +∞

for s > s∗. In fact, finite-time blowup is known for (CM-DNLS)

Explicit flow formulas (see below)

For rest of my talk, I focus on (HWM)
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Introducing the Half-Wave Maps Equation

For maps u : [0,T )× R → S2, we consider the evolution equation

∂tu = u× |D|u (HWM)

Here S2 ⊂ R3 is unit sphere, × is cross product, and |̂D|f = |ξ|f̂ .

For smooth initial data u0 = u∞ + v ∈ S2 + H∞(R;R3), we have short time
existence.
(HWM) as Hamiltonian flow of closed curves on S2
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For maps u : [0,T )× R → S2, we consider the evolution equation

∂tu = u× |D|u (HWM)

Here S2 ⊂ R3 is unit sphere, × is cross product, and |̂D|f = |ξ|f̂ .

Hamiltonian flow for ‘half-Dirichlet energy’ with

E (u) =
1

2

∫
R
u · |D|u =

1

4π

∫∫
R×R

|u(x)− u(y)|2

|x − y |2
dx dy .

Crit. pts. of E (u) = stationary solutions of (HWM) = half-harmonic maps

Energy-critical because of scaling

u(t, x) 7→ u(λt, λx)

Completely integrable with Lax pair found bin [L.-Gérard ’18].

Pole dynamics studied in [Zhou-Stone ’17], [Langmann et. al ’22], [Matsuno
’22].
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Lax Structure for (HWM)

For smooth solutions u(t) of (HWM), find Lax equation of commutator form

d

dt
Lu(t) = [Bu(t), Lu(t)]

with (possibly unbounded) operators L∗u(t) = Lu(t) and B∗
u(t) = −Bu(t) acting on

some Hilbert space H.

If Lax pair (Lu,Bu) exists, we (formally) have

Lu(t) = U(t)Lu(0)U(t)∗

where U(t) is unitary map on H generated by Bu(t).

Spectrum σ(Lu(t)) preserved. Infinite hierarchy of conserved quantities with

Im(u(t)) = Tr (|Lu(t)|m) = const. for m = 1, 2, 3, . . .

Question: What are (Lu,Bu,H) for (HWM)?
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By algebraic trick, inspired by Takhtajan/Faddeev for (SM), we consider
matrix-valued version

∂tU =
i

2
[U, |D|U] (HWM)

with the matrix-valued function U using the Pauli matrices σ = (σ1, σ2, σ3)
where

U = u · σ =

(
u3 u1 − iu2

u1 + iu2 −u3

)
∈ C2×2

Note that U∗ = U and U2 = 12 and TrU = 0.

Attempt #1: Let µf be multiplication operator with symbol f . Take

Lu = µU and Bu = − i

2
µ|D|U

acting on H = L2(R;C2).

Then (HWM) is already a Lax equation.

But we always have σ(Lu) = {±1} is trivial!
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with the matrix-valued function U using the Pauli matrices σ = (σ1, σ2, σ3)
where

U = u · σ =

(
u3 u1 − iu2

u1 + iu2 −u3

)
∈ C2×2

Attempt #2: Using that U2 = 12 we can freely change to

Bu =
i

2
(µU ◦ |D|+ |D| ◦ µU)−

i

2
µ|D|U

With this choice, we get a decent Lax equation

d

dt
Lu = [Bu, Lu] for any choice of Lu ∈ {µU,Π+,Π−}

where Π± : L2 → L2± are Cauchy–Szegő projections, i. e., in Fourier space
we have

(̂Π+f )(ξ) = 1ξ≥0 f̂ (ξ)
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Exploiting the Lax Structure for (HWM)

Consider smooth solutions U(t) to matrix-version of (HWM) with

∂tU =
i

2
[U, |D|U]

By Leibniz rule for d
dt and [X ,Y ], we see any operator product

µu,Π+µUΠ+,Π+µUΠ−, . . .

is a Lax operator for (HWM) with spectrum preserved in time.

Most notably, we have the pair of Lax operators given by

TU = Π+µUΠ+ and HU = Π−µUΠ+

referred to as Toeplitz and Hankel operator with (matrix-valued) symbol U.

From U2 = 12 and U∗ = U, we derive key identity

T 2
U = Id− KU

with trace-class operator KU = H∗
UHU with Tr(KU) ∼ ∥u∥2

Ḣ
1
2
.
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Spectal Analysis of TU

For general data u ∈ Ḣ
1
2 (R;S2), we have

T 2
U = Id− KU with 0 ≤ KU ≤ 1 trace-class

Spectrum of TU decompesed as σ(TU) = σd(TU) ∪ σess(TU)

Infinite set of conserved quantities by p-Schatten norms of KU

Tr(K p
U) = ∥KU∥pSp ∼ ∥u∥p

Ḃ
1/p
p

(Besov norms)

But quantities not strong enough to extend solutions globally in time!

Kronecker’s theorem for Hankel operators yields

rank (KU) < ∞ ⇔ u is rational

Thus rationality is preserevd by flow of (HWM)!
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GLobal Wellposedness for Rational Data

Theorem (L.-Gérard ’24)

(HWM) is globally wellposed for rational initial data, i. e., for any u0 ∈ Rat(R;S2)
there exists a unique solution u ∈ C (R; Ḣ∞) of (HWM) with u(0) = u0.

Remarks

First GWP-result for (HWM). Also no small data result.

In fact, the set Rat(R;S2) is dense in the energy space Ḣ
1
2 (R;S2).

Proof uses explicit flow formula for (HWM), valid for sufficiently smooth
solutions of (HWM) which are not necessarily rational.

However, our analysis becomes feasible for rational solutions.
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Explicit Flow Formula

Let U(t) = U∞ + V(t) be smooth solution of initial-value problem

∂tU =
i

2
[U, |D|U] for t ∈ [0,T ], U(0) = U0 .

Because of U = U∗, all information is contained in the part Π+V(t) ∈ L2+.

Lemma (Explicit Flow Formula)

For all t ∈ [0,T ], it holds

Π+V(t, z) =
1

2πi
I+

[
(X ∗ + tTU0 − z)−1Π+V0

]
∀ z ∈ C+

Here Toeplitz operator TU0 acts on L2+(R;C2×2) and not on L2+(R;C2)

(A− z)−1 resolvent of operator A with z ∈ ρ(A).
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Constuction of X ∗

X ∗ is renormalized version of position operator x 7→ xf on L2+

The operator X ∗ : dom(X ∗) ⊂ L2+ → L2+ is defined as

(̂X ∗f )(ξ) := i
df̂

dξ
with dom(X ∗) = {f ∈ L2+ | df̂

dξ
∈ L2+}

Its adjoint X ̸= X ∗ has domain dom(X ) = {f ∈ dom(X ∗) | f̂ (0+) = 0}
Rational functions in L2+ belong to dom(X ∗) but not to dom(X ), e. g.,

1

x + i
∈ dom(X ∗) but

1

x + i
̸∈ dom(X ) .

X and X ∗ are generators of canonical semigroups on L2+, i. e.

{S(η)}η≥0 = eiηX (right shifts), {S∗(η)}η≥0 = eiηX
∗

(left shifts) .
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Derivation of Explicit Flow Formula
At time t = 0, we have Cauchy’s integral formula for f ∈ L2+ written as

f (z) =
1

2πi
I+[(X

∗ − z)−1f ] ∀ z ∈ C+

with I+(f ) := limξ→0+ f̂ (ξ).

By Lax evolution we get unitary map U(t) and Π+V(t) = U(t)ΠV0. By
mimicking Heisenberg’s picture in QM, we get

Π+V(t, z) =
1

2πi
I+[(X

∗ − z)−1U(t)Π+V0]

=
1

2πi
I+[(U(t)∗X ∗U(t)− z)−1Π+V0]

Finally, by Lax pair structure and commutator relations,

U(t)∗X ∗U(t) = X ∗ + tTU0

Ersatz of Olshanetsky/Perelomov in infinite dimensions!
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Fine structure of resolvent is important to obtain (GWP)!

For half-wave maps, we find

Π+V(t, z) =
1

2πi
I+[(X

∗ + tTU0 − z)−1Π+V0]

for matrix-valued initial data U0 with and U0 = U∗
0 and U2

0 = 12.

For zero-dispersion limit (BO), we find

Π+u(t, z) =
1

2πi
I+((X

∗ + tTu0 − z)−1Π+u0]

with scalar initial data u0 = u∗0 .
Singularity formation (shocks!) in finite time is known!
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Soliton Resolution and Non-Turbulence

Theorem (L.-Gérard ’24)

Let u0 ∈ Rat(R;S2) and suppose that TU0 has simple discrete spectrum

σd(TU0) = {v1, . . . , vN} .

Then corresponding solution u ∈ C (R; Ḣ∞) exhibits soliton resolution with

u(t, x) =
N∑
j=1

qvj (x − vj t)− (N − 1)u∞ + oḢs (1) as t → ±∞

where each qvj is a ground state traveling solitary wave profile for (HWM).

Obtain a-priori bounds supt∈R ∥u(t)∥Ḣs ≤ C (u0, s). No turbulence!

Set of initial data {u0 | σd(TU0) simple} is dense in energy space Ḣ
1
2 (R;S2).

Triviality of scattering map since profiles for t → −∞ and t → +∞
conicide.

Proof uses explicit flow formula.
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1
2 (R;S2).

Triviality of scattering map since profiles for t → −∞ and t → +∞
conicide.

Proof uses explicit flow formula.

22 / 25



Soliton Resolution and Non-Turbulence

Theorem (L.-Gérard ’24)

Let u0 ∈ Rat(R;S2) and suppose that TU0 has simple discrete spectrum

σd(TU0) = {v1, . . . , vN} .

Then corresponding solution u ∈ C (R; Ḣ∞) exhibits soliton resolution with
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where each qvj is a ground state traveling solitary wave profile for (HWM).

Obtain a-priori bounds supt∈R ∥u(t)∥Ḣs ≤ C (u0, s). No turbulence!
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Soliton Resolution: Idea of Proof
Let ε = t−1 and write explicit flow formula

Π+V(ε, x) =
ε

2πi
I+

[
(εX ∗ + TU0 − εx)−1Π+V0

]
Make perturbative analysis of operator

M(ε) = εX ∗ + TU0 as ε → 0

For rational data U0, we only need to consider the restriction

M(ε) = εX ∗ + TU0 acting on some subspace H with dimH < ∞

Use classical (non-degenerate) perturbation theory for matrices

Reinstalling time t = ε−1 for |ε| ≪ 1, we find resolution

Π+V(t, x) =
N∑

n=1

An(t)

x − zn(t)
for |t| ≫ 1

Refined analysis yields soliton resolution. QED
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Outlook and Open Questions

For (HWM), natural generalization of target S2 are

Grk(Cd) = complex Grassmannians

Note that Gr1(Cd) ∼= CPd−1 and CP1 ∼= S2.

Global Wellposedness for non-rational data, turbulence, blow-up?

Systematic study of fine properties of resolvents

(X ∗ + tL0 − z)−1

for (BO), (CM-DNLS), and (HWM) with operators Lax L0. Presumably, this
is key to GWP and Soliton Resolution...
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Thank you for your attention!
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