Nullspace Conditions for Block-Sparse Recovery of Semidefinite Systems

Janin Heuer, Frederic Matter, Marc E. Pfetsch and Thorsten Theobald

Problem setting

Consider a linear transformation $\mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
\mathcal{A}(X)=\left(A_{1} \bullet X, \ldots, A_{m} \bullet X\right)^{\top},
$$

where $A_{1}, \ldots, A_{m} \in \mathcal{S}^{n}$ are in block-diagonal form w.r.t. blocks B_{1}, \ldots, B_{k}.

Goal: Finding solutions $X \succeq 0$ of $\mathcal{A}(X)=b$ with minimal block support $\mathrm{BS}(X):=\left\{i \in[k]: X_{B_{i}} \neq 0\right\}$.

Formulation as optimization problem:

$$
\begin{equation*}
\min \left\{\|X\|_{*, 0}: \mathcal{A}(X)=b, X \succeq 0\right\} \tag{1}
\end{equation*}
$$

with

$$
\|X\|_{*, 0}=\left\|\left(\left\|X_{B_{1}}\right\|_{*,} \ldots,\left\|X_{B_{k}}\right\|_{*}\right)^{\top}\right\|_{0}
$$

where $\|\cdot\|_{*}$ denotes the nuclear norm $\|A\|_{*}=\sum_{i=1}^{n} \sigma_{i}(A)$ with singular values $\sigma_{i}(A)$ of A and

$$
\|x\|_{0}:=|\operatorname{supp}(x)|=\left|\left\{i \in[n]: x_{i} \neq 0\right\}\right| .
$$

Alternatively, analogous problems without the restriction $X \succeq 0$ can and have been studied.

Idea: replace non-convex $\|\cdot\|_{*, 0}$ and consider convex relaxation

$$
\begin{equation*}
\min \left\{\|X\|_{*, 1}: \mathcal{A}(X)=b, X \succeq 0\right\} \tag{2}
\end{equation*}
$$

Aim: Characterize, when solving (2) yields a solution of (1) using null space properties (NSPs)
Motivation: Signal recovery, identifying minimal irreducible subsystems of spectrahedra

Special Case: Linear Problems

Consider 1×1-blocks. (1) without additional constraint $X \succeq 0$ reduces to well-studied vector case

$$
\begin{equation*}
\min \left\{\|x\|_{0}: A x=b, x \in \mathbb{R}^{n}\right\} . \tag{3}
\end{equation*}
$$

Standard result: LP relaxation

$$
\begin{equation*}
\min \left\{\|x\|_{1}: A x=b, x \in \mathbb{R}^{n}\right\} \tag{4}
\end{equation*}
$$

satisfies the NSP: Any s-sparse vector x is the unique solution of (4) iff for all $S \subset[n]$ with $|S| \leq s$ we have

$$
\left\|v_{S}\right\|_{1}<\left\|v_{\bar{S}}\right\|_{1} \text { for all } v \in \operatorname{ker}(A) \backslash\{0\} .
$$

Analogously, (1) and (2) specialize to well studied nonnegative versions of (3) and (4) with corresponding non- negative NSP, see e.g. Donoho, Foucart/Rauhut.

Semidefinite Block-Matrix NSP

Definition. A linear transformation $\mathcal{A}(X)$ in block-diagonal form satisfies the semidefinite block-matrix null space property of order s iff for all $S \subset[k],|S| \leq s$ and all $V \in \operatorname{ker}(\mathcal{A}) \backslash\{0\}, V \in \mathcal{S}^{n}$ with $\lambda_{j}\left(V_{B_{i}}\right) \leq 0$ for all $j \in\left[n_{i}\right]$ with $i \in \bar{S}$, where n_{i} denotes the size of the block B_{i},

$$
\sum_{i \in S} \sum_{j \in\left[n_{i}\right]} \lambda_{j}\left(V_{B_{i}}\right)<\sum_{i \in \bar{S}} \sum_{j \in\left[n_{i}\right]}\left|\lambda_{j}\left(V_{B_{i}}\right)\right| \quad \quad\left(\mathrm{NSP}_{*, 1, \succeq 0}^{*}\right)
$$

holds.
Theorem. Let $\mathcal{A}(X)$ be a linear transformation in block-diagonal form, $b \in$ \mathbb{R}^{m} and $s \geq 1$. The following statements are equivalent:
(i) If $\mathcal{A}(X)=b$ has a solution $X^{0} \in \mathcal{S}_{+}^{n}$ with $\left\|X^{0}\right\|_{*, 0} \leq s, X^{0}$ is the unique solution of (2).
(ii) $\mathcal{A}(X)$ satisfies the semidefinite block-matrix null space property of order s.

Special Case: Linear Block-Problems

If A_{1}, \ldots, A_{m} are diagonal matrices, (1) also captures the as of yet unstudied block vector setting for the signed case.
Corollary. Choosing (X) in diagonal form, above Theorem also shows that block-sparse solutions of linear systems

$$
\begin{align*}
& b=A x=[A[1] \cdots A[k]] x \tag{5}\\
& x \geq 0
\end{align*}
$$

where $A \in \mathbb{R}^{d \times n}$ consists of k blocks $A[i] \in \mathbb{R}^{d \times n_{i}}$ and $b \in \mathbb{R}^{d}$, can successfully be recovered by solving a linear program. More specifically, the following statements for the block-linear system (5) are equivalent:
(i) If $A x=b$ has a nonnegative solution $x^{0} \in \mathbb{R}^{n}$ with $\left\|x^{0}\right\|_{1,0} \leq s$, then x^{0} is the unique solution of

$$
\min \left\{\|x\|_{1,1}: A x=b, x \geq 0\right\}
$$

(ii) A satisfies the nonnegative block-linear null space property of order s, i.e.,

$$
\sum_{i \in S} \sum_{j \in B_{i}} v_{j}<\sum_{i \in \bar{S}} \sum_{j \in B_{i}}\left|v_{j}\right|
$$

holds for all $S \subset[k],|S| \leq s$ and all $v \in \operatorname{ker}(A) \backslash\{0\}$, with $v_{j} \leq 0$ for all $j \in B_{i}$ with $i \in \bar{S}$.

Outlook

- It can be shown that using positive semidefiniteness/nonnegativity captures cases, that can not be recovered by corresponding unrestricted NSPs.
- It is possible to formulate a more general framework unifying all the above mentioned cases.

Technische
Universität
Braunschweig

