A Speed-up for Helsgaun's TSP Heuristic by Relaxing the Positive Gain Criterion Sabrina Ammann, Birte Ostermann, Sebastian Stiller, Timo de Wolff

Traveling Salesman Problem (TSP)

- Complete, undirected graph G = (V, E)
- Vertices $V = \{1, ..., n\}$
- **Edges** $E = \{\{i, j\} \mid i, j \in V, i \neq j\}$ with **costs** assigned by cost function $c : E \to \mathbb{R}_{>0}$
- A tour T is a Hamiltonian cycle of G, i.e. a cycle that includes every vertex exactly once.

Lin-Kernighan-Helsgaun (LKH)

LKH is a state-of-the-art TSP heuristic that iteratively tries to improve a given tour T, i.e. tries to establish a new tour T' with c(T') < c(T). **Idea**: Exchange edges along **alternating cycles** $(x_1, y_1, \ldots, x_k, y_k)$: • Select edges x_i to be deleted from T and edges y_i to be added • Exchanging edges x_i , y_i , we restrict to certain **heuristic criteria**: • E.g.: Total cost difference of deleted and added edges is positive

Goal: Find a tour *T* in which the **sum of costs** c(T) over the edges traversed is **minimal**. **Challenge:** The TSP is NP-hard!

A tour through 15112 cities in \Rightarrow Heuristics can find a tour in a relatively short Germany: Instance d15112 of TSPLIB [3]. running time without guarantee for optimality.

Relaxed Positive Gain Criterion

Given deleted edges x_1, \ldots, x_i and added edges y_1, \ldots, y_{i-1} we limit the selection for y_i by the following condition (R), assuming $G_0 > 0$:

$$G_{i-1} = \sum_{\ell=1}^{i-1} c(x_{\ell}) - c(y_{\ell}) > 0 \quad \text{or} \quad G_i = \sum_{\ell=1}^{i} c(x_{\ell}) - c(y_{\ell}) > 0 \quad (\mathsf{R})$$

Positive Gain Criterion [1]: Given deleted edges x_1, \ldots, x_i and added edges y_1, \ldots, y_{i-1} we limit the selection for y_i by the condition:

Gain
$$G_i = \sum_{\ell=1}^i c(x_\ell) - c(y_\ell) > 0$$

Start tour: $c(\mathbf{T}) = 24$. At random Choose y_1 to be added: Selecting After the next edge exchange, we vertex A, choose edge x_1 to delete. (D, E) gives gain $G_1 = 6 - 4 = 2$. obtain the tour T' with c(T') = 20.

Experimental Setup

We implement (R) in LKH 3.0.8 [2] by K. Helsgaun and compare to original code on various benchmark instances, e.g. from TSPLIB [3].

■ Computer cluster: one node, ■ Test candidate set types [1,4]

 $c(\mathbf{T}) = 24$. At vertex *F*, select x_1 . Select y_1 : We now allow $G_1 \leq 0$. After edge exchanges: c(T') = 20. 256 AMD EPYC 7742 64-CPU

■ 10 or 100 runs per instance

and number of candidates

Further algorithm engineering

Computational Results

Relaxed LKH vs. LKH 3.0.8 with POPMUSIC [4] candidate sets and five candidates. Display of the **averaged** results over all **small**, **medium** and **large** instances, resp.

Version	Problem size #Instances		Minimal	Avg. gap to	Avg. time
			cost	optimum	per run
LKH 3.0.8	small	172	3,031,129	0.0077%	3.5 s
Relaxed LKH	(n < 1,000)	123	3,031,129	0.0072%	4.0 s
LKH 3.0.8	medium	140	4,865,171	0.083%	42.5 min
Relaxed LKH	$(1,000 \le n \le 30,000)$	140	4,864,873	0.076%	40.9 min
LKH 3.0.8	large	20	32, 826, 656	Optimum	25.35 h
Relaxed LKH	$(30,000 < n < 1 \times 10^6)$	20	32, 824, 384	not known	21.91 h

Using the Relaxed Positive Gain Criterion:

The quality of solutions does not differ significantly.

Speed-up on Large Instances

Relaxed LKH vs. LKH 3.0.8 in average time per run on large instances that completed ten runs in one month.

References

[1] Helsgaun, K., An effective implementation of the Lin–Kernighan traveling salesman heuristic, European journal of operational research 126 (2000), no. 1, 106–130.

[2] Helsgaun, K., LKH, http://webhotel4.ruc.dk/~keld/research/LKH-3/, January 2023, Version 3.0.8, accessed 03/23.

- Small instances: On average 0.5 s (14%) increase of running time per run. ■ Medium instances: On average ca. 90 s (4%) decrease of running time per run. **Large instances:** On average 3.4 h (13.6%) decrease of running time per run, for individual large instances, up to 30% decrease of running time.
- [3] Reinelt, G., TSPLIB—a traveling salesman problem library, ORSA journal on computing 3 (1991), no. 4, 376–384.
- [4] Taillard, E. D., Helsgaun, K., POPMUSIC for the Travelling Salesman Problem, European Journal of Operational Research 272 (2019), no. 2, 420–429.

